Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein.

نویسندگان

  • Lewis V Wray
  • Susan H Fisher
چکیده

The Bacillus subtilis TnrA transcription factor belongs to the MerR family of proteins and regulates gene expression during nitrogen-limited growth. When B. subtilis cells are grown with excess nitrogen, feedback-inhibited glutamine synthetase forms a protein-protein complex with TnrA that prevents TnrA from binding to DNA. The C-terminal region of TnrA is required for the interaction with glutamine synthetase. Alanine scanning mutagenesis of the C-terminal region of TnrA identified three classes of mutants that altered the regulation by glutamine synthetase. While expression of the TnrA-regulated amtB gene was expressed constitutively in the class I (M96A, Q100A, and A103G) and class II (L97A, L101A, and F105A) mutants, the class II mutants were unable to grow on minimal medium unless a complex mixture of amino acids was present. The class III tnrA mutants (R93A, G99A, N102A, H104A, and Y107A mutants) were partially defective in the regulation of TnrA activity. In vitro experiments showed that feedback-inhibited glutamine synthetase had a significantly reduced ability to inhibit the DNA-binding activity of several class I and class II mutant TnrA proteins. A coiled-coil homology model of the C-terminal region of TnrA is used to explain the properties of the class I and II mutant proteins. The C-terminal region of TnrA corresponds to a dimerization domain in other MerR family proteins. Surprisingly, gel filtration and cross-linking analysis showed that a truncated TnrA protein which contained only the N-terminal DNA binding domain was dimeric. The implications of these results for the structure of TnrA are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of tnrA alleles which result in a glucose-resistant sporulation phenotype in Bacillus subtilis.

Bacillus subtilis cells cannot sporulate in the presence of catabolites such as glucose. During the analysis of Tn10-generated mutants, we found that deletion of the C-terminal region of the tnrA gene, which encodes a global regulator that positively regulates a number of genes in response to nitrogen limitation, results in a catabolite-resistant sporulation phenotype. Analyses of nrg-lacZ and ...

متن کامل

In Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii

Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...

متن کامل

Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA

Bacillus subtilis TnrA, a global regulator of transcription, responds to nitrogen availability, but the specific signal to which it responds has been elusive. Genetic studies indicate that glutamine synthetase is required for the regulation of TnrA activity in vivo. We report here that the feedback-inhibited form of glutamine synthetase directly interacts with TnrA and blocks the DNA binding ac...

متن کامل

Feedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site.

The feedback-inhibited form of Bacillus subtilis glutamine synthetase regulates the activity of the TnrA transcription factor through a protein-protein interaction that prevents TnrA from binding to DNA. Five mutants containing feedback-resistant glutamine synthetases (E65G, S66P, M68I, H195Y, and P318S) were isolated by screening for colonies capable of cross-feeding Gln(-) cells. In vitro enz...

متن کامل

Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis

Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA-regulated genes have been character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 1  شماره 

صفحات  -

تاریخ انتشار 2007